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Abstract-The elastostatic analysis of transversely isotropic finite cylinders with stress-free lateral surfaces
is considered using the formulation in terms of a displacement potential. Solution in the form of the
eigenfunction expansion where each of the eigen-functions satisfies the lateral boundary conditions is
obtained. The end conditions are satisfied by means of the general orthogonality relations for the radial
eigenfunctions. The orthogonality technique gives closed-form expressions for the Fourier-Bessel
coefficients for certain types of mixed end conditions. For other cases the technique leads to an infinite set
of linear equations. The convergence of these equations are examined and solutions are obtained by
suitable truncation. Both stress and displacement end conditions are considered and numerical results for
two types of transversely isotropic materials are presented.

NOTATION
(a, ii, b, ii, 1-') II material constants defined in eqn (4)

c, and C2 separation constants in the differential eqn (I)
Em and Ew material parameters used for normalization; see Table I-Em = Em/106

; Ew = Ew/106

F; radial eigenfunction
Jn Bessel function of the first kind
K C2/C,

21 length of the cylinder
m number of eigenfunctions in the expansion

U, i) radial and axial coordinates, where r =nro and z = i/ ro
ro radius of the cylinder

(ti, w) displacements in the U, i) system where u = ti/ro and w = w/ro
Zo IIro

(Em 'Y,,) normal and shear strains
'" displacement potential
A, eigenvalue, with Ai = Aic,
p unit weight of the cylinder

(um T,,) normal and shear stresses
(Uko Wk, Tko uk! eigenfunctions defined in eqn (20)

(0'.0") end conditions defined in eqn (19)
8 circumferential coordinate

INTRODUCTION
The elastostatic analysis of cylinders under end loading has been the subject of many
investigations [1-4]. Earlier researchers were confronted by computational difficulties associ
ated with arbitrary end conditions, singularities under certain end conditions and lack of
suitable orthogonality relations for the radial eigenfunctions. The solution of a semi-infinite
cylinder, like a semi-infinite strip, can be sought as a combination of eigensolutions, which
decay axially, as well as a nondecaying elementary solution. The technique of eigenfunction
expansion with the end conditions being satisfied using a least-square procedure is convenient
with a digital computer [5]. Little and Childs [6] have developed biorthogonality relations for the
radial eigenfunctions of an isotropic cylinder which have been used in the solution of several
end problems [3]. Famap] derived more general orthogonality relations for an isotropic cylin
der. Following Fama. Byrnes and Archer[8] presented the orthogonality conditions for a
transversely isotropic (TIl cylinder. Although these relations have been used in the solution of a
few isotropic problems, their computational features have not been studied especially for TI
cylinders.

The solution of finite cylinders is closely related to the semi-infinite case. Pickett [9]
analyzed an isotropic cylinder under axial compression using a multiple Fourier-Bessel Series
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Solution. Moghe and Neff [to] used a similar analysis for a constrained elastomeric cylinder
under end compression. Power and Childs [II] considered an isotropic finite cylinder and
obtained solutions by means of the biorthogonal eigenfunction expansion developed for a
semi-infinite case[6]. Mitra[I2] considered a TI finite cylinder, but his solution does not admit
arbitrary end conditions. References to the analysis of finite cylinders using numerical tech
niques may be found in[2, II]. The present paper considers the exact analysis of axisymmetric.
TI finite cylinders with arbitrary end conditions using the general orthogonality relations [7. 8].

A linear elasticity formulation in terms of the displacement potential due to Eubanks and
Sternberg[5, 13] is adopted. The solution for a finite TI cylinder with stress-free lateral surface
is constructed from the radial eigenfunctions of the semi-infinite case and a zero-eigenvalue
solution. The coefficients of the eigenfunction expansion are evaluated by means of the general
orthogonality conditions. The orthogonality technique yields closed form solutions for certain
types of mixed end conditions. In other cases the technique leads to an infinite set of linear
equations which can be solved after suitable truncation. The conditions for the convergence of
the solution of these equations are briefly examined. A few typical combinations of end
conditions are studied, and solutions by the least-square method are obtained for comparison.
For a short cylinder with only axial loading, the limiting case of a plane stress model [14] is
compared with the exact analysis.

2 ANALYSIS

Consider a circular cylinder in the region rE[O, ro] and ZE[±/] where ro is the radius and 2/ is
the length of the cylinder. The linear elastostatic equations of an axisymmetric TI cylinder in
the absence of body forces can be written as[5, 13]

where the displacement potential 4J is defined as

a= -(b + /.L)4J';i

w=a[A. .. +!A..J+IIA. ..'P." ro/,r r-'f'.zz

with (.) denoting partial differentiation. CI~ and c/ are the roots of the equation

(I)

(2)

(3)

where the stress-strain relations are

j:::) = [a (a~2ii-)
(Tl: Sym.
T rz

b 0ljE" )b 0 E88

ii 0 Ezz .

/.L 'Yrz

(4)

It can be shown that the form of the solution of eqn (l) for a TI cylinder is

(5)

where 4Jj are harmonic functions. For a semi-infinite cylinder in the region rE[O, ro] and ZE[-/, 00]
the decaying solution may be taken as an aggregate of the eigenfunctions:

4J' = L A j e-.i:;Z[Jo(Ajr) + Blo(KAjr)]
j

(6)

where r = f/ ro, Z = zi ro, K = C2!c'" Aj = A/c" and Aj are nonzero eigenvalues. Aj are constants
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evaluated from the boundary conditions at the end i == -[ and Bj are obtained from the
eigenvalue problem. The expressions for stresses and displacements can conveniently be
written as

(7)

where

(8)

with u = iilro. w = W/ro and 20 =/Iro. For a cylinder with zero stresses on the lateral surface.
which is of concern in the present investigation. the boundary conditions may be written as

where

Z -3 - -zd1k = -J,L(ack + b)Jo(PdAj +2CkJ,L(b + J,L)JI(PdAj

Z -3dZk = CkJ,L(aCk + b)J\(PdAj

Aj = AjBj> PI = Aj and pz = KAj.

(9)

(10)

(11)

The condition for the nontrivial solution of eqn (9) yields an equation of the form G(A) = 0 with
roots Aj. Then eqn (9) can be solved for Bj • The eigenspectrum lying in the right half of the
complex plane yields decaying solutions. By an analogous procedure it follows that the
decaying solution for a semi-infinite cylinder in the region fE[O, ro] and iE[/. -ooJ is given by

4>" = L Ai eAl[Jo(Ajr) + BJo(KAjr)j
j

(12)

where Aj obviously lies in the right half of the complex plane, and Aj depends on the boundary
conditions at i = I.

It is easy to show that the complete solution to a finite cylinder with no body forces can be
written as a combination of the above eigenfunction expansions for the two semi-infinite cases:

4> = 4>0+ L (Ali eAl + Ali e-AjZ)/eAf1l1Fj(Aj. r)
j

(13)

where 4>0 is the zero-eigenvalue solution, discussed subsequently, and Fj is the eigenfunction
given by

(14)
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Ali and A Zi are constants to be evaluated from the conditions at z = ±zo. The expressions for
stresses and displacements are given by eqns (7) where

115)

Zero-eigenvalue solution:
The solution of eqn (I) corresponding to Ao =0 assumes the form

(16)

Deleting the terms which do not affect the displacements or stresses,

(17)

The last term in eqn (17) as well as the az-term in eqn (16) represent rigid body displacements
along z. It is enough to retain one of them. Upon satisfying the zero-stress condition at f = ro
one has

(18)

The first term in eqn (18) represents a uniform axial stress state in the cylinder.

3. SOLUTIONS FOR ARBITRARY END CONDITIONS

The uniform normal stress distribution on the ends directly determines al in eqn (18). The
constants A Ii and A Zi in the eigenfunction expansion are evaluated from the self-equilibrated
end conditions. A convenient method of satisfying these conditions approximately is by means
of a least-square procedure. The biorthogonality technique developed by Little and Childs [6]
can also be used to evaluate the coefficients of the eigenfunction expansion. Power and
Childs [11] adopted this method for finite isotropic cylinders. Alternatively, the general ortho
gonality relations developed by Fama[7] for an isotropic cylinder and later extended to a TI
case by Byrnes and Archer[8] provide an elegant method of determining the Fourier-Bessel
coefficients. The features of such an analysis for a TI finite cylinder are studied in this paper.
The various combinations of end conditions considered are

(i) azzCr, z) = u(r), u(r, z) = li(r)

(ii) w(r, z) = w(r), Trz(r, z) = fer)
at Z = Zo- (19)

(iii) azzer, z) = u(r), TrzCr, z) = fer)

(iv) w(r. z) = w(r), u(r, z) = li(r)

The quantities at the end z = -Zo are distinguished by a prime, e.g. 17'. Solutions are obtained by
means of the orthogonality technique, and a few results for comparison are obtained using the
least-square integral technique as well as a least-square point matching technique.

3.1 Orthogonality technique
The orthogonality relations among the radial eigenfunctions of a TI cylinder with zero stresses

at r = 1 is given by[7, 8].

k-,tj (20)

where (aj, Wj, Tjo Ui) are the radial eigenfunctions associated with (azz• w. Trz , u). Let the
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Fourier-Bessel expansion for the solution of a finite cylinder be

309

[(A AI A -AI)I AIe] u()Un lj e' - 2j e ' e' (Ti

W

~~
[(A lj eAP + A2i e-iP)/eA;Zo]Wi ZWo

+Ao (21)

Tn [(A I· eAjl + A2' e-AjX)/eAjZO]Ti TO1 _ 1.. _

u [(Ali e~jZ - A 2j e-~j')/eAA>]Uj Uo

where the second vector is the zero-eigenvalue solution. Let Uu "" ii and u = il .be prescribed at
z ~ zoo Then, upon using the orthogonality relation (20) in the eigenfunction expansion one gets

(22)

where

Let w wand 1"r1 = i be prescribed at z ~ Zo- Then one has instead of eqn (22)

[A A -2ie] I II .- -) dlk + 2k e -tl = -c (WUk - TUk r r.
k 0

(23)

(24)

A set of equations similar to eqns (22) and (24) can be obtained from the end conditions at
z -Zoo

Now, let (ii, il) at z = Zo and (ii', ii') at z = -Zo be the prescribed end conditions. Then, using
the basic eqns (22) and (24) and their counterparts associated with the end conditions at z = - Zo,

(25)

where

If (w, i) at z "'" Zo and (w', i') at z = - Zo are the end conditions, the orthogonality technique
leads to the following equations.

(26)

Thus it is seen that for the two types of mixed end conditions considered above one gets
closed-form expressions for the Fourier-Bessel coefficients. If (ii, i) or (ii, w) are the end
conditions. the orthogonality technique leads to, as in the case of semi-infiite cylinders, an
infinite set of linear equations involving A 1k and A 2k• For example when (U, il at z'" Zo and (u',

T', at z = - Zo are given, it can be shown that
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A I t { (-' -') -2A,Zo( - -)
2k = 2C

k
E

kk
Jo - U Wk + 'T Uk + e UWk + 'TUk (27)

(28)

In the above case the zero-eigenfunction uncouples from nonzero-eigenfunctions. A similar set
of equations follow for the end conditions (w, ii) at z = Zo and (w', ii') at z = - Zo:

4 I t {( - -) -2A z ( -, -')
, Ik = 2C

k
E

kk
Jo WUk - U'Tk - e ' o. W Uk - U Tk

+L AljEkj(UjWk - Tjud - ~ A 2Pkj(UjWk + TjUk)}r dr
I I

A I t {( -, -') -2A,z ( - -)
2k = 2C

k
E

kk
Jo W Uk + U 'Tk - e 0 WUk + UTk

(29)

(30)

where k > O. For k = 0 the relevant equation can be directly obtained from eqns (20) and (21).
Note that E kj ~ 1 and Gkj ~ 0 for large values of k and j as well as zoo The two ends of the
cylinder obviously have very little mutual influence as Zo increases. Equations similar to (27) for
any given combination of end conditions can be derived from the basic eqns (22)-(24).
Equations (25) or (27) may be rearranged in the following form for a given number of
eigenfunctions m.

(30)

where p, q = I, ... . 2m, and k = 1, ...• m; {P} is derived from the end conditions. The
convergence of the sequence of solutions of eqn (30) as m ~ 00 is discussed in Appendix 1.

4. COMPUTATIONAL DETAILS
The two major steps in the numerical evaluation of the coefficients of the eigenfunction

expansion are (i) computation of the eigenvalues Aj associated with eqn (9); and (ii) compu
tation of the coefficients A Jj and A2j for a given set of end conditions. The approximate
locations of the roots Aj of the transcendental equation associated with eqn (9) are obtained by
using the computer printer to print the quadrant locations of the function at a grid of points in
the A-plane. The approximate roots are then refined by a Newton-Raphson iteration. The
complex Bessel functions fo(x) and fl(x) are computed accurate up to seven digits using the
infinite series for values of Ixl:s 10 and the Hankel asymptotic expansions for Ixl > 10. The
elements of the matrix [Spq] ion eqn (30) appear as a linear combination of the following
integrals:

PI = P2

f f O(Plr)fo(P2 r )r dr

= [P lf J(PJ)fo(P2) - P2fO(PJ)fl(P2)]/(PI2 - P2
2
). PI # P2

= ~ [M(PI) +f J2(pJl],

where PI and P2 are constants.

(31)

(32)
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PI =P2·

f J1(Plr)JI(P2r )r dr

= [P2JI(PI)JO(P2) - PIJO(PI)J1(P2)]f(PI
2

- ph

= ~ [M(PI) - :1 Jo(PI)JI(PI) +J/(PI)],

PI oj. P2 (33)

(34)

The integrals involving the prescribed end conditions can be evaluated either in closed form or
numerically, depending on the type of prescribed functions. The infinite set of equations are
truncated for a given number of modes m and solved for the Fourier-Bessel coefficients.

It may be noted that if Aj is an eigenvalue its conjugate ~ is also an eigenvalue when Cj are
real, and KA j is an eigenvalue when Ci are complex. For both the cases Fj is an eigenfunction
where R corresponds to Aj • Assuming that Aj is complex and R+, = Fj, it follows that
Apj+ I =Apj, P = 1, 2, because the stresses and displacements are real. Since the eigenspectrum
in general may consist of both real and complex roots it is computationally advantageous to
carry out the solution of Apj in real mode. While computing the elements of [Skj], whenever
Fk+l =Fk it is enough to compute Skj, j = 1, ... m, because Sk+lj, j = 1, ... m can be easily
derived from Skj. Then, by noting that A pk+1 = Apk, P = 1,2, one can obtain a real coefficient
matrix instead of [Ski] and a real vector whose elements are A~k and A;k where Apk =

(A~k + iA;k)' The coefficient matrix involved in the orthogonality technique turns out to be
unsymmetric because of the nonself-adjoint nature of the basic eigenproblem.

Least-square technique
The boundary residuals at the ends may be minimized using the least-square procedure. The

details of the method applied to a semi-infinite cylinder may be found in [5]. The least-square
integrals of the boundary residuals can be compactly programmed using the integrals in eqns
(31)-(34). The elements of the coefficient matrix, which is symmetric and positive definite, have
been computed as described earlier. For additional comparison a least-square point matching
technique has been used with composite Simpson's rule for numerical integration. Whenever
the integrals involving the prescribed end conditions could not be evaluated analytically, the
orthogonality as well as least-square integral techniques also used numerical integration for
such integrals.

5. EXAMPLE PROBLEMS
The following problems are chosen for numerical study.

(a)

(b)

ii = (l - 2r2)Em and l' = 0 at z = zo

ii' =::t(l - 2r2)Em and 1" =0 at z =- zo

W= Wand ii = {3r at z = zo

w' =- Wand ii' ={3r at z =- Zo

(35)

(36)

where Wand {3 are constants. The end conditions (36) can be attained in a cylinder with rigidly
bonded ends when a uniform temperature drop of Toe occurs. If a is the coefficient of linear
expansion, w=aTzo and {3 = aT. Another practically interesting case is a cylinder compressed
between two rigid end plates. If the end plates are such as to constrain the inplane displace
ment, {3 =0.

(c) U =T =0 at z = zo

w' ={3(l- 2r2
) and 1" =0 at z =-zo. (37)

The solution for the above end conditions together with the elementary solution of the cylinder
under self-weight (p per unit volume) corresponds to a cylinder resting under its own weight on
a smooth plane at z = - zoo The expression for w' has been obtained from the elementary
solution by prescribing IJ wr dr = 0 at z = - zoo Two TI materials, namely, magnesium and a
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Table 1. Material properties and eigenvalues for the TI cylinders*

~Iagnesi um [5J

a ~ 8.18 Em' (a-2::-) ~ 3.34 Em' b = 2.62 Em

a=8.5Em• w= 2.44 En; Em "lx106 pSi

2 2c
1

~ 0.5269 and c
2

= 1.972

Ha rdwood

a ~ 0.9365 x 10-
1

Ew' (a-2;~) 0.4920 x 10 L
W

b = 0.7143 x 10-
1

E • a = 0.1071 \ 101 f.w w

, = 0.6667 x 10 - 1 E; E 1 S t he a x i a I
2 • w w modulus of eldsticity

c i = 0.8912 and c~ = 12.84

J j

2.088 ± i 0.7851 1.071

3.550 2.109 t i 0.2869

5.351 ± i 0.6927 2.481

6.839 3.486

8.555 ± i 0.6898 4.382

10.13 5. 356 t i 0.2773

*Althou9h up to a maximum of 35 sets of eigenvalues were used in the calculations.
only the first 6 sets are given here.

typical hardwood are used for numerical illustration. The material properties and the first six
sets of eigenvalues for cylinders with stress-free lateral surfaces are given in Table 1. Note that
the properties of magnesium are more nearly isotropic than those of hardwood.

6. RESULTS AND DISCUSSION

Cylinder with prescribed end stresses
The results for both the symmetric and antisymmetric cases (eqn 35) are shown in Figs. I

and 2. For the symmetric case the convergence is excellent for the range of II ro ratios
considered (zo == 3.0-0.05). The accuracy for a given number of eigenfunctions m actually
increased for lower values of II roo However, the accuracy for antisymmetric cases deteriorates
with decreasing L/ roo For one particular case, with II ro == 0.2 and m == 53, the end stress fit has a
maximum error of 4% at r == 1 and considerably less error at other points. The superposition of
the symmetric and antisymmetric end loadings results in a "thick plate" with a self-equilibrated
loading of u == 2(1 - 2r2)Em on z == zoo For this case, the results in Fig. 3 indicate that the normal
stresses due to bending tend to become linear in z as the plate gets thinner, thus corroborating
the Kirchhoff assumption for thin plates. A comparison of the plane stress solution for a thin
plate with loads on both the ends, obtained from the analysis in Appendix 2, with the exact
analysis indicates that the plane stress assumption gives sufficiently accurate results for
II ro :s; 1/20. A few typical results are shown in Fig. 4.

Cylinder with prescribed end dispLacements
The end conditions (36) are known to have a singularity at r == I, z == ±zo, which will affect

the convergence of the solution near the singular point. Accordingly the numerical results
reveal an accurate displacement fit at the ends except near r == I. Since the stresses are obtained
from the displacements by differentiation, the numerical results for the stresses at the ends do
not converge especially due to the presence of higher order eigenfunctions. However the
convergence is found to be good at z == ±(zo - 0.1) as also observed in a semi-infinite case [5].

While prescribing an axial displacement uniformly over the end, if the u displacements at
±Zo are not constrained the solution obviously is given by the zero-eigenvalue solution in eqn
(18). But when u is constrained at the ends a certain axial displacement is produced which when
arrested gives rise to an additional axial force. For example, when a constrained magnesium
cylinder (condition 36) undergoes an axial displacement of w== -w' == -zo/106 at the ends the
elementary solution gives U'zz == -7.3079 Em. Whereas the average U'zz by the exact analysis
depends on the IIro ratio. For IIro == (3., 2., I., 0.5) the average U'zz are -(7.375, 7.408, 7.513,
7.738) x Em. For the hardwood cylinder the corresponding values are -(1.006, 1.010, 1.020,
1.037) x E w whereas by the elementary solution U'zz == -1.0 x E w• The axial stress variations
are plotted in Fig. 5. The ratios of normal to shear stresses in the end zone suggest that for a
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Fig. I. Stresses in finite cylinders under a a' =(I - 2r'')Emand T=i' = 0; Em =Em/l06
•

cylinder compressed between end plates a full restraint on u seems practically feasible if
sufficient friction exists. Although the effect of such a constraint is not quite significant for the
example materials, it has been found to be appreciable in the case of elastomeric cylinders [101.
For a constrained cylinder undergoing a uniform temperature drop the results are given in Fig.
6. The increase in the average CTzz with decreasing tiro ratio, observed in both the above
problems, may be ascribed to the fact that the axial displacement caused by the constraint on u
produces a larger axial force in a shorter cylinder.

Cylinder under self-weight
The end conditions (37) illustrate a combination of purely stress conditions at one end and a

mix of stress and displacement conditions at the other. The mixed conditions at z ::: - Zo lead to
closed-form expressions for the Fourier-Bessel coefficients for a semi-infinite case. For a finite
cylinder, the orthogonality equation at z == - Zo is used to eliminate A2k in eqn (24) thus resulting
in a reduced problem size. The axial stresses for a cylinder resting under its own weight with
tiro == 0.5 are displayed in Fig. 7.

For sufficiently large values of II ro, the end conditions (37) tend to represent a semi-infinite
cylinder with mixed end conditions at z := -Zo. The results for this case are shown in Fig. 8.

Least-square procedure
The least-square integral procedure has been used to solve a semi-infinite cylinder with

stress as well as displacement end conditions. The results reveal a slightly more accurate
boundary fit compared to the orthogonality technique. The computation times for the two
methods did not differ significantly. The least-square point matching technique with m := 38 and
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with 30 subdivisions for numerical quadrature yielded results of sufficient accuracy, although
the computation time increased substantially.

7. CONCLUSIONS

The exact analysis of transversely isotropic axisymmetric finite cylinders has been consi
dered using a displacement potential formulation. The solution was expressed as an aggregate
of the radial eigenfunctions which satisfy the lateral boundary conditions. The Fourier-Bessel
coefficients of the expansion have been evaluated using the general orthogonality relations
among the eigenfunctions. The orthogonality technique has been applied to typical cases of
stress, displacement as well as mixed end conditions. The method lends itself to easy
programming for a digital computer. The least-square integral as well as point matching
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Fig. 6. Stresses in a constrained magnesium cylinder due to uniform temperature drop.
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Fig. 8. Strains in semi-infinite cylinders under w' =(I ~ 2,-2)/106 and f' =0 at end z '" -2.

techniques were also considered. Comparison of a few results by the least-square integral
method with those from the orthogonality technique revealed that the former method yielded a
slightly more accurate boundary fit than the later method. The computation times for the two
methods did not differ significantly in these cases. However, for problems with mixed end
conditions the orthogonality technique involves a reduced problem size. The least-square point
matching technique was found to yield sufficiently accurate results although it involved
substantially more computation time.
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APPENDIX I
The series in eqn (21) converges provided the eigenfunctions Fj (eqn 14) are complete. The completeness of the

eigenfunctions for the case of a cylinder with stress-free lateral surface is yet to be proved[1]. However the convergence
of the numerical results from many investigations suggest that the eigenfunctions may be complete in the appropriate
space. The following discussion is concerned with the question whether the sequence of solutions obtained by truncating
the infinite system (30) converges to a limit. Let

(AIT', AIT'). k = 1,2 .. m

be the solution of eqn (30) for m eigenfunctions in eqn (21). The sequence of solutions {(AIT', AIT')} converge to a limit as
m ~oo if in eqn (30)

p = l, 2, ... '" (All

and the elements of {P} are bounded [15].
An analytical investigation of the condition (A.I) will not be attempted here. Instead, the numerical form of the

coefficient matrix for a given set of end conditions will be used to verify the convergence condition. The real coefficient
matrix (discussed in Section 4) is computed for two cases, one with stress and the other with displacement end conditions.
A maximum value of m =47 has been considered. The absolute sum, as defined in eqn (AI), of the first row of the matrix
converges to the fourth significant digit. The next few rows show convergence to the third significant digit. A definite
tendency of numerical convergence could be observed up to about forty rows although the summation was carried up to
only 47 terms. Thus it appears that the sequence of solutions obtained by truncating the infinite system in eqn (30) may
converge 10 a limit. This observation together with the observed convergence of the results for stresses and displacements
suggest that the eigenfunctions may be complete.

APPENDIX 2

Plane stress analysis of a thin TI disc
Consider an axisymmetric cylinder with the end conditions u" = u(r) and Tn = 0 at z = ±Zo. For a thin disc a plane

stress state may be assumed:

u" = u} for all z.
Tn =0

Then from the stress-strain relation for u" one has

(Bil

(B2)

In view of eqn (B I) the axial equilibrium equation is identically satisfied. Then, using the stress-strain relations and eqn
(B2), the radial equilibrium equation in terms of u becomes

(B3)

Beck[l4] used a similar analysis for a thin orthotropic disc. Let u= (I 2r)Em• Then the solution of eqn (B.3) may be
written as

u = Cr+Dr3

where

D = EmP/8. P = -4b/(aii bl )

C = Em {b/ii - P(3R +S)/8}/(R +S)

R=(a-bl/ii), S=(a-2Ji.)-b l/ii.

The other displacement and stresses can be readily evaluated using the expressions for E" and u.

(B4)


